Exploiting Innocuous Activity for Correlating Users Across Sites

Oana Goga UPMC Sorbonne Universités 23 Avenue d'Italie Paris, France oana.goga@lip6.fr Howard Lei ICSI 1947 Center St., Suite 600 Berkeley, USA hlei@icsi.berkeley.edu

Gerald Friedland ICSI and UC Berkeley 1947 Center St., Suite 600 Berkeley, USA fractor@icsi.berkeley.edu Robin Sommer ICSI and LBNL 1947 Center St., Suite 600 Berkeley, USA robin@icir.org

WWW 2013 Tehila Minkus Sree Hari Krishnan Parthasarathi ICSI 1947 Center St., Suite 600 Berkeley, USA sparta@icsi.berkeley.edu

Renata Teixeira CNRS and UPMC Sorbonne Universités 23 Avenue d'Italie Paris, France renata.teixeira@lip6.fr

Lots of public data in lots of places Linked in yelpes fickr

More than the sum of their parts?

Attempting account linkage across

The tools:

Threat model

- Attacker with moderate resources
- Given account a in SN1, wants to find corresponding account a in SN2
- Attacker can't crawl entire network so needs to limit himself to a subgroup of SN2

Attack algorithm

- 1. Select a target from OSN 1
- 2. Filter entire search space of OSN 2
- 3. Generate similarity score for each candidate
- 4. Output top (or top k) matches
- 5. If this is (includes) the match, success!

Collecting ground truth

- 10,000 email addresses from previous study
- Use browser automation to find corresponding accounts with "FriendFinder" feature
- Limit dataset to accounts with geotagged data

Collecting potential matches

- Twitter: use Streaming API to collect tweets in specific geographic areas
- Flickr: collect photos with geotags in those areas
- Yelp: collect reviews from restaurants in those areas

Geo Subgroups for Matching

		GT in				
	GT	SF†	SD†	NY†	C†	LA†
Twitter-Flickr	13,629	474	152	427	236	284
Twitter-Yelp	1,889	160	45	106	50	117
Flickr-Yelp	1,199	120	46	81	42	82
Twitter-Flickr-Yelp	559	33	9	25	11	23

Table 1: Number of users in the ground-truth dataset GT (total, and divided into 5 selected areas). † Users with more posts inside a given area than outside it.

		$\widetilde{\mathbf{SN}}_{2}$ in				
	$\widetilde{\mathrm{SN}}_2$	SF†	SD†	NY†	C†	LA†
Twitter	232,924	75,747	35,068	89,219	54,774	77,402
Flickr	22,169	6,916	2,305	5,730	4,122	4,113
Yelp	28,976	16,463	4,064	6,239	3,629	9,556

Table 2: Number of users in the SN_2 dataset (total, and divided into 5 selected areas). † Users with at least one post inside a given area; users may belong to multiple areas.

Features

- Location profile: histogram of clustered places from which a user has posted, normalized to represent prob. distribution of locations
- Time profile: windows of times when user has posted
- Language profile: a prob. distribution based on unigram histogram

Fixing Location: Approaches

- Grids (10x10 km)
- Zip code
- Zip codes weighted by TF-IDF
- Clustered locations (unsupervised)

Location clustering, detail

- Run k-means clustering on all the geotagged data in each city to find 10,000 *landmark clusters*
- Then represent a user's geotag data as a weighted distribution of its 20 closest landmarks
- Each user's location profile is a histogram based on all of his geotags

Location Approaches: Comparison

Figure 1: ROC curves for different location representations for matching Flickr and Yelp users (GT_1^{SF}) to Twitter users (\widetilde{SN}_2^{SF}) .

Approaches to Time and Language

- Time: a sliding window of 5 seconds to match posts (looking for automatic posts)
- Language: remove case sensitivity and punctuation, remove 1000 top words, then consider unigrams (better performance than n-grams)

Combining Features

Uses binary logistic regression classifier that takes similarity score and outputs "match/no match" and probability of matching

Results

Table 3: Comparison of the TPR for different classifiers at 1% FPR for matching Flickr and Yelp accounts to Twitter.

	TPR at 1%FPR		
Feature	Flickr-Twitter	Yelp-Twitter	
Timing (T)	13±3%	-	
Language (Lang)	10±3%	6±3%	
Location (Loc)	60±6%	44±6%	
Username (U)	77±3%	7±4%	
Loc, Lang	60±6%	42±6%	
Loc, T	$70\pm3\%$	-	
Loc, Lang, T	63±5%	-	
Loc, U	86±2%	44±6%	
Loc, Lang, U	86±2%	44±7%	
Loc, T, Lang, U	88±2%	-	

Discussion and Future Work

- Extending to other OSNs
- Considering attacks against groups rather than individuals
- Inferring location data from other posts, etc
- How to mitigate risk?
 - no automatic posting
 - don't post to several sites from same location

Thanks!

Full paper available at: http://www.icir.org/robin/papers/www13-correlation.pdf